Mining the data from a hyperheuristic approach using associative classification

نویسندگان

  • Fadi A. Thabtah
  • Peter I. Cowling
چکیده

Associative classification is a promising classification approach that utilises association rule mining to construct accurate classification models. In this paper, we investigate the potential of associative classifiers as well as other traditional classifiers such as decision trees and rule inducers in solutions (data sets) produced by a general-purpose optimisation heuristic called the hyperheuristic for a personnel scheduling problem. The hyperheuristic requires us to decide which of several simpler search neighbourhoods to apply at each step while constructing a solutions. After experimenting 16 different solution generated by a hyperheuristic called Peckish using different classification approaches, the results indicated that associative classification approach is the most applicable approach to such kind of problems with reference to accuracy. Particularly, associative classification algorithms such as CBA, MCAR and MMAC were able to predict the selection of low-level heuristics from the data sets more accurately than C4.5, RIPPER and PART algorithms, respectively. 2007 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Combined Descriptive and Predictive Methods of Data Mining for Coronary Artery Disease Prediction: a Case Study Approach

Heart disease is one of the major causes of morbidity in the world. Currently, large proportions of healthcare data are not processed properly, thus, failing to be effectively used for decision making purposes. The risk of heart disease may be predicted via investigation of heart disease risk factors coupled with data mining knowledge. This paper presents a model developed using combined descri...

متن کامل

An Integrated DEA and Data Mining Approach for Performance Assessment

This paper presents a data envelopment analysis (DEA) model combined with Bootstrapping to assess performance of one of the Data mining Algorithms. We applied a two-step process for performance productivity analysis of insurance branches within a case study. First, using a DEA model, the study analyzes the productivity of eighteen decision-making units (DMUs). Using a Malmquist index, DEA deter...

متن کامل

Efficient Classifier Generation over Stream Sliding Window using Associative Classification Approach

Prominence of data streams has dragged the interest of many researchers in the recent past. Mining associative rules generated on data streams for prediction has raised greater research interest in recent years. Associative classification mining has shown better performance over many former classification techniques in Data Mining and Data Stream Mining domains. This paper introduces a new tech...

متن کامل

Using Associative Classifiers for Predictive Analysis in Health Care Data Mining

Association rule mining is one of the most important and well researched techniques of data mining for descriptive task, initially used for market basket analysis. It finds all the rules existing in the transactional database that satisfy some minimum support and minimum confidence constraints. Classification using Association rule mining is another major Predictive analysis technique that aims...

متن کامل

Review and Comparison of Associative Classification Data Mining Approaches

Associative classification (AC) is a data mining approach that combines association rule and classification to build classification models (classifiers). AC has attracted a significant attention from several researchers mainly because it derives accurate classifiers that contain simple yet effective rules. In the last decade, a number of associative classification algorithms have been proposed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2008